Independent Sets in Graphs with given Minimum Degree
نویسنده
چکیده
The enumeration of independent sets in graphs with various restrictions has been a topic of much interest of late. Let i(G) be the number of independent sets in a graph G and let it(G) be the number of independent sets in G of size t. Kahn used entropy to show that if G is an r-regular bipartite graph with n vertices, then i(G) ≤ i(Kr,r). Zhao used bipartite double covers to extend this bound to general r-regular graphs. Galvin proved that if G is a graph with δ(G) ≥ δ and n large enough, then i(G) ≤ i(Kδ,n−δ). In this paper, we prove that if G is a bipartite graph on n vertices with δ(G) ≥ δ where n ≥ 2δ, then it(G) ≤ it(Kδ,n−δ) when t ≥ 3. We note that this result cannot be extended to t = 2 (and is trivial for t = 0, 1). Also, we use Kahn’s entropy argument and Zhao’s extension to prove that if G is a graph with n vertices, δ(G) ≥ δ, and ∆(G) ≤ ∆, then i(G) ≤ i(Kδ,∆).
منابع مشابه
Diameter Two Graphs of Minimum Order with Given Degree Set
The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...
متن کاملSplice Graphs and their Vertex-Degree-Based Invariants
Let G_1 and G_2 be simple connected graphs with disjoint vertex sets V(G_1) and V(G_2), respectively. For given vertices a_1in V(G_1) and a_2in V(G_2), a splice of G_1 and G_2 by vertices a_1 and a_2 is defined by identifying the vertices a_1 and a_2 in the union of G_1 and G_2. In this paper, we present exact formulas for computing some vertex-degree-based graph invariants of splice of graphs.
متن کاملCounting Independent Sets of a Fixed Size in Graphs with a Given Minimum Degree
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree δ that admits the most independent sets is the complete bipartite graph Kδ,n−δ. He conjectured that except perhaps for some small values of t, the same graph yields the maximum count of independent sets of size t for each possible t. Evidence for this conjecture was recently provided by Alexander...
متن کاملCounting Independent Sets of a Fixed Size in Graphs with Given Minimum Degree
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree δ that admits the most independent sets is the complete bipartite graph Kδ,n−δ. He conjectured that except perhaps for some small values of t, the same graph yields the maximum count of independent sets of size t for each possible t. Evidence for this conjecture was recently provided by Alexander...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملA Note on Independent Sets in Graphs with Large Minimum Degree and Small Cliques
Graphs with large minimum degree containing no copy of a clique on r vertices (Kr) must contain relatively large independent sets. A classical result of Andrásfai, Erdős, and Sós implies that Kr-free graphs G with degree larger than ((3r−7)/(3r− 4))|V (G)| must be (r− 1)-partite. An obvious consequence of this result is that the same degree threshold implies an independent set of order (1/(r − ...
متن کامل